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A B S T R A C T   

Statistical learning, the ability of the human brain to uncover patterns organized according to probabilistic re
lationships between elements and events of the environment, is a powerful learning mechanism underlying many 
cognitive processes. Here we examined how memory for statistical learning of probabilistic spatial configurations 
is impacted by interference at the time of initial exposure and varying degrees of wakefulness and sleep during 
subsequent offline processing. We manipulated levels of interference at learning by varying the time between 
exposures of different spatial configurations. During the subsequent offline period, participants either remained 
awake (active wake or quiet wake) or took a nap comprised of either non-rapid eye movement (NREM) sleep only 
or NREM and rapid eye movement (REM) sleep. Recognition of the trained spatial configurations, as well as a 
novel configuration exposed after the offline period, was tested approximately 6–7 h after initial exposure. We 
found that the sleep conditions did not provide any additional memory benefit compared to wakefulness for 
spatial statistical learning with low interference. For high interference, we found some evidence that memory 
may be impaired following quiet wake and NREM sleep only, but not active wake or combined NREM and REM 
sleep. These results indicate that learning conditions may interact with offline brain states to influence the long- 
term retention of spatial statistical learning.   

1. Introduction 

The ability of the human brain to uncover patterns organized ac
cording to probabilistic relationships between elements and events in 
the environment is called statistical learning (Fiser & Lengyel, 2019). 
Statistical learning is hypothesized to be a domain-general learning 
mechanism (Perruchet, 2019; Perruchet & Pacton, 2006) that may un
derlie several higher-order cognitive processes, including language 
learning (Saffran et al., 1996) and object and scene recognition (Fiser & 
Aslin, 2001). Statistical learning is rapid and implicit – it is evident after 
only a few minutes of exposure (Aslin et al., 1998; Kim et al., 2009; 
Saffran et al., 1996; Szegedi-Hallgató et al., 2017) and occurs without 
explicit awareness of the underlying statistical structure (Fiser & Aslin, 

2002a; Kim et al., 2009), though attention to the stimuli may be bene
ficial (Richter & de Lange, 2019; Turk-Browne et al., 2005). In typical 
laboratory studies of statistical learning, participants are passively 
exposed to stimuli that have been organized into patterns based on a 
probabilistic rule. These patterns may be arranged according to tem
poral regularities (e.g., item B follows item A in a visual stream) (Fiser & 
Aslin, 2002a; Saffran et al., 1999), spatial configurations (e.g., item B is 
located to the left of item A) (Fiser & Aslin, 2001, 2002a; Karuza et al., 
2017), or a combination of temporal and spatial components (Janacsek 
et al., 2012). After a brief exposure period, people can correctly recog
nize familiar patterns (Fiser & Aslin, 2001) with a decreased reaction 
time on a detection task (Bays et al., 2016; Kim et al., 2009; Turk- 
Browne et al., 2005). However, observers are not typically aware of 
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this implicit knowledge and cannot recreate patterns on an explicit 
matching test (Kim et al., 2009; Turk-Browne et al., 2005). 

Many studies have examined the initial, fast-learning phase of sta
tistical learning that occurs during initial exposure and allows for the 
rapid extraction of associative relationships that are tested shortly after 
exposure (Aslin & Newport, 2012; Schapiro et al., 2012). However, 
given that statistical learning is posited to be a general learning mech
anism (Aslin, 2017; Fiser & Aslin, 2001; Kirkham et al., 2002; Thiessen 
et al., 2013), it should also persist over extended delays and perhaps 
generalize to novel stimulus sets. In other words, following the initial 
fast-learning phase, there may also be a slow-learning phase that occurs 
offline and allows for further processing of the previously learned ma
terial (i.e., consolidation), which could lead to myriad behavioral out
comes, including maintenance of the learning (Kim et al., 2009; Kobor 
et al., 2017), improved recognition of the statistical structure (Durrant 
et al., 2011), abstraction of the underlying structure (Gómez et al., 
2006), and insight (Wagner et al., 2004). Sleep has been shown to 
benefit consolidation in many learning domains (Diekelmann & Born, 
2010), including declarative memory (Gais et al., 2006; Mednick et al., 
2013), motor skill learning5, implicit priming (Cai et al., 2009), and 
perceptual learning (McDevitt et al., 2013, 2015; Mednick et al., 2003). 
In studies examining the role of sleep for consolidation of statistical 
learning, some have reported a sleep-related benefit for learning 
temporally-structured sequences (Durrant et al., 2011, 2013, 2016; Lutz 
et al., 2018), whereas others have not found sleep effects on the 
consolidation of implicit statistical learning in temporal probabilistic 
learning tasks (Simor et al., 2019). 

In contrast to prior studies that have studied consolidation of tem
poral regularities, the current study examined the role of sleep for 
consolidation of visual statistical learning of probabilistic relationships 
between elements in space (Fiser & Aslin, 2001). Spatial statistical 
learning is distinct from the large subdomain of temporal statistical 
learning, and it refers to the fact that all relevant statistical structure 
during training is conveyed in the spatial domain (Fiser & Aslin, 2001, 
2002b, 2005; Lee et al., 2021; Orban et al., 2006; Plaut & Vande Velde, 
2017). That is, the order of the sequentially appearing scenes provides 
no information that could be learned; all information is provided 
through the relative spatial position of two (or more) given shapes 
within a scene. Some of this spatial information is useless as various 
pairs of shapes can be positioned next to each other in random ar
rangements in a given scene, while other spatial information is highly 
relevant as it indicates the fixed spatial relation of two shapes across the 
entire training session. Since the pairs are typically placed on a grid, 
there is no apparent segmentation of shape-pairs within a scene; all that 
the observer sees is six shapes next to each other in an apparently 
random arrangement. From this initial perception, the observer evolves 
an implicit realization by the end of the familiarization that some shape 
pairs are more related to each other, and they are able to reliably 
distinguish between such fixed pairs and not so fixed pairs during the 
test. 

We aimed to test how visual statistical learning of spatial patterns 
was consolidated across four offline brain states – active wake (AW), 
quiet wake (QW), naps with non-rapid eye movement (NREM) sleep 
only, and naps with both NREM and REM sleep. Since our prior work 
reported that REM sleep was critical for consolidating perceptual 
learning that was disrupted by interference (McDevitt et al., 2015), we 
also asked whether spatial statistical learning is vulnerable to task- 
specific interference, and if interference effects interact with offline 
consolidation states. Finally, we examined the abstraction of statistical 

learning rules to a novel stimulus set following the sleep or wake period. 
This is an important question because prior studies have implicated 
sleep, in particular REM sleep, in the development of rule abstraction 
(Walker & Stickgold, 2010), while other work has shown that REM sleep 
contributes to the high specificity of perceptual learning (Mednick et al., 
2003). The current design will test the specificity of spatial statistical 
learning and the role of sleep therein. 

We created two within-subject interference conditions by varying the 
time between learning exposures of different task sets (McDevitt et al., 
2015; Seitz et al., 2005). Each set was composed of unique objects paired 
together in probabilistic spatial relationships. For the high interference 
condition, subjects were exposed to two, unique sets close together in 
time (~1 min). For the low interference condition, a third, unique set was 
exposed in isolation an hour after exposure to the first two sets. 
Following these exposure periods, we used a between-subjects nap 
paradigm, which provides experimental control of sleep stages and 
circadian influences (Mednick et al., 2003), to create four distinct brain 
states for offline processing of the high and low interference statistical 
learning. Following an offline period containing either AW, QW, NREM 
only, or NREM + REM sleep, participants were exposed to a novel 
configuration and were tested for recognition of the trained and novel 
configurations. 

In summary, the present study tested the following three predictions: 
(i) memory for visual statistical learning of spatial patterns would be 
impaired for the task sets encoded under conditions of high interference 
compared to low interference; (ii) NREM sleep alone would be sufficient 
for producing a sleep-related performance benefit in the low interfer
ence condition, whereas REM sleep would be necessary in the high 
interference condition; and (iii) if REM sleep facilitates abstraction of 
statistical learning rules, then learning a novel stimulus set would be 
boosted by REM sleep during the preceding offline period. 

2. Materials and methods 

2.1. Subjects 

183 healthy, non-smoking adults between the ages of 18 and 35 with 
no personal history of neurological, psychological, or other chronic 
illness gave informed consent to participate in the study. All experi
mental procedures were approved by the Institutional Review Boards of 
the University of California, San Diego and University of California, 
Riverside. Subjects were asked to maintain their usual sleep-wake 
schedule during the week prior to the experiment and to refrain from 
consuming caffeine, alcohol, and all stimulants for 24 h prior to and 
including the study day. Heavy caffeine users (>3 servings per day) were 
not enrolled to exclude the possibility of significant withdrawal symp
toms during the experiment. Subjects completed sleep diaries during the 
entire week prior to the experiment and wore actigraph wrist monitors 
(Actiwatch-64, Respironics) the night before the experiment to provide 
subjective and objective measures of sleep-wake activity, respectively. 
We also surveyed the napping habits of a subset of participants (n = 150, 
those who participated in the full-day study). 81% of our participants (n 
= 122) were considered “habitual” nappers (they reported napping at 
least once per week), and the remaining 19% (n = 28) reported napping 
less than once per week or never (McDevitt et al., 2018). 

2.2. Stimuli and task (Fig. 1) 

Subjects completed a task similar to that developed by Fiser and 
Aslin (Fiser & Aslin, 2001). Twenty-four complex shapes were created 
from simple two-dimensional figures. The shapes were black on a white 
background and were displayed within a 5 × 10 grid. The maximum 
height and width of the shapes were scaled to be equal and half of the 
size of a grid cell. Stimuli were presented using the Psychophysics 
Toolbox (Brainard, 1997; Pelli, 1997) for Matlab (See Fig. 1). 

The stimulus set was divided into four sets (Sets A, B, C and Y) of six 

5 However, it remains debated if the benefit of sleep for motor learning is due 
to release from reactive inhibition (Pan & Rickard, 2015; Rickard et al., 2008), 
recovery from waking decay (Cellini & McDevitt, 2015; Nettersheim et al., 
2015), stabilization (Brawn et al., 2010), or absolute enhancement (Korman 
et al., 2007; Walker et al., 2003) of the practiced motor sequence. 
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shapes each, thereby creating four versions of the task each with unique 
shapes. The six shapes within each version were organized into three 
base pairs. Each base pair consisted of two given shapes in a particular, 
invariant spatial relationship (horizontal, vertical or oblique), hence 
base pairs can be conceptualized as rigid unknown objects in a scene 
(see Fig. 1.ii). The assignment of shapes to one of the four task versions 
was set. Within a version, the specific assignment of the six shapes to the 
three base pairs was randomized across subjects to ensure that specific 
shape pairs were not more (or less) easily learned. 

Scenes were created by positioning the three base pairs in the grid so 
that each base pair would neighbor at least one of the other pairs. 
Positioning was determined pseudo-randomly with the constraint that 
within a version all base pairs were grouped either on the right side or 
left side only of the display. Since the two shape elements of a base pair 
always appeared together, the joint probability of the two shapes in each 
base pair was 1.00. The configuration of the base pairs resulted in 
accidental co-occurrences when one shape of one base pair was located 
next to another shape of a different base pair. However, the joint 
probability of such coincidental non-base pairs was much smaller than 
that of the base pairs. 

The task consisted of two phases: familiarization and test. During 
familiarization (Fig. 1.ii), subjects saw 90 scenes per version one time 
each (a total of 4.5 min per version). Each scene was shown for 2 s, with 

a 1 s inter-trial-interval between scenes. Subjects were told to pay 
attention to the continuous sequences of scenes so that they would be 
able to answer some simple questions after the familiarization phase. No 
further instructions were given, thereby ensuring that subjects were 
unaware of the spatial patterns in the scenes. During the test phase 
(Fig. 1.iii), subjects completed a two-alternative forced-choice (2AFC) 
recognition test. Each test consisted of 18 trials in which a base pair and 
non-base pair were shown sequentially in different positions in the 5x10 
grid. Base pair shapes were always shown in the same orientation 
relative to one another, but their position on the grid varied across trials. 
Each pair was presented for 2 s, with a 1 s pause between pairs. Subjects 
were asked to judge if the first or second pair of shapes was more 
familiar, and responded with a keypress (“1” or “2”). 

2.3. Task paradigm and interference conditions 

Over the course of the study day (Fig. 1.i), participants were exposed 
to and tested on four task Sets. These Sets all contained unique shapes 
but followed the same underlying pattern of three base pairs constructed 
from two given shapes in a particular spatial relation (horizontal, ver
tical or oblique). Critically, the familiarization phase for each Set fol
lowed a specific time course, which created three within-subject task 
conditions: high interference, low interference, and novel. First, Set A 

Fig. 1. Experimental methods. i.) Participants were familiarized (blue boxes) and tested (green boxes) on four tasks sets (A, B, C and Y) following a specific time- 
course that created the following three within-subject task conditions: high interference, low interference, and novel. Between sessions, participants took a nap, 
rested quietly (quiet wake, QW) or carried out their usual daily activities outside of the lab (active wake, AW). ii.) In the familiarization phase, participants passively 
viewed scenes composed of six shapes that, unbeknownst to the participant, were consistently organized into three base pairs. Base pairs followed a specific spatial 
relationship – either horizontal, vertical, or oblique (red outlines are for demonstration purposes only; participants were not explicitly informed about base pair 
relationships). iii.) In the test phase, participants completed a two-alternative forced-choice (2AFC) recognition test. On each trial, a base pair and non-base pair were 
shown sequentially in different positions in the grid; base pairs always maintained the same spatial relationship (horizontal, vertical, or oblique) as the familiar
ization phase. Participants were asked to judge if the first or second pair of shapes was more familiar. Note that the actual displays used in the experiment were 5 ×
10 (not 5 × 5) grids, but that the six shapes were always grouped together on the right or left half of the grid, so the relative distances between shapes displayed here 
are accurate. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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and Set B were shown one after the other with only a short break be
tween Sets (~1 min) when the experimenter entered the room and 
launched the Set B task. Set C was exposed 1 hr after Set B. Finally, Set Y 
was exposed following a 7 hr offline period that contained either wake 
or sleep (see section 2.4 Protocol). 

Together, Set A and Set B formed the high interference condition, 
since learning two similar pieces of information back-to-back is known 
to impair memory retention (Wixted, 2004). Set C was the low inter
ference condition, since it was neither immediately preceded nor fol
lowed by another task Set (Seitz et al., 2005), but could still be impacted 
by interference due to general mental exertion (Wixted, 2004). The 
novel Set Y allowed us to examine if sleep or wake during the 7 hr offline 
period aided abstraction of the underlying rules, thereby facilitating 
learning of new base pairs that followed the same spatial configuration 
rules as Sets A-C. The four versions of the task were counterbalanced 
across Sets and subjects. 

2.4. Protocol (Fig. 1.i) 

Subjects completed familiarization of Sets A and B from 09:00–09:10 
and familiarization of Set C at approximately 10:10. During the 1 hr 
interval between Set B and Set C familiarization, subjects were engaged 
in other (unrelated) laboratory tasks. At 11:00, subjects were randomly 
assigned to one of four groups. Subjects in the AW group (n = 48) left the 
lab and carried out their normal daily activities, but were instructed to 
abstain from exercise, caffeine, and napping. Wakefulness in the AW 
group was monitored using actigraph wrist monitors. Subjects in the QW 
group (n = 34) rested in the lab for 75-min (from ~ 13:00–14:15) while 
sitting in a recliner with their eyes closed and listening to classical 
music, with online polysomnographic (PSG) monitoring to make sure 
they did not fall asleep. During QW sessions, experimenters woke sub
jects at the first sign of Stage 1 sleep. Subjects in the two nap groups were 
randomly assigned to take either a 60-min or 90-min nap with PSG- 
recording between 13:00 and 15:00. Given that shorter naps tend to 
have less REM sleep than longer naps, the use of these two durations 
increased the likelihood of having naps with and without REM sleep 
(Mednick et al., 2003). Post-hoc sleep stage scoring was used to cate
gorize subjects into either the REM (n = 38, naps contained more than 
one minute of REM sleep) or NREM (n = 30) group. At 16:30, Set Y 
familiarization was completed, followed immediately by the test phase 
of all four sets in one of two counterbalanced orders (ACBY or CAYB). 

Most statistical learning studies measure learning shortly following 
familiarization (~5–15 min). However, the design of our experiment 
required that we test learning following a longer retention interval 
(~7hrs), and as such, we could not include an immediate test without 
confounding the delayed test. Therefore, we obtained a measure of 
immediate test performance 10 min after familiarization of one Set of 
stimuli (i.e., no interference) in a separate group of subjects (n = 14). 
These subjects completed the familiarization phase of one Set only (i.e., 
Set A) between 9:00–12:00, followed by a 10 min distractor task (col
oring a picture) and the Set A test phase. 

2.5. Polysomnography 

PSG data were collected using Astro-Med Grass Heritage Model 15 
amplifiers and Grass Gamma software. Scalp electroencephalogram and 
electrooculogram electrodes were referenced to unlinked contralateral 
mastoids (C3/A2, C4/A1, O1/A2, LOC/A2 and ROC/A1), and electro
myogram electrodes were attached under the chin to measure muscle 
tone. PSG data were digitized at 256 Hz and visually scored in 30-second 
epochs according to the sleep staging criteria of Rechtschaffen and Kales 
(Kales & Rechtschaffen, 1968), except that we adopted the AASM 
standard of combining stages 3 and 4 into one stage N3 (which we also 
refer to as slow wave sleep). A participant’s data were excluded and 
replaced if sleep efficiency during the nap was <60% (n = 18), or if post- 
hoc sleep scoring indicated that a subject had >5 min of Stage 1 sleep in 

the QW group (n = 1). 
We used the automated spindle and slow oscillation (SO) detectors 

described in Zhang et al. (Zhang et al., 2020) to quantify the number and 
density of spindle and slow oscillation events during stage 2 and slow 
wave sleep. Power spectra were calculated by Fast Fourier Transform for 
frequency bands of interest: delta (0.5–4 Hz) in stage 2 and slow wave 
sleep, and theta (4–8 Hz) in REM sleep. 

2.6. Statistical analyses 

Performance was quantified as the percentage of trials (out of 18 
trials per Set) during the test phase in which the base pair was selected as 
being more familiar than the non-base pair. Chance performance was 
50%. Performance in the immediate test comparison group served as a 
measure of learning shortly after familiarization without interference or 
offline sleep/wake manipulations, henceforth referred to as ImmTest. 

Data were analyzed using SPSS 23.0 and JASP 0.9.2. We ran one-way 
and mixed-model ANOVAs (task condition as the within-factor and 
offline group as the between-factor), and we employed contrast analyses 
to test our a priori hypotheses. If the omnibus ANOVA was non- 
significant, we conducted additional exploratory analyses to examine 
simple effects (all t-tests were family-wise corrected for multiple com
parisons such that total alpha for a family of comparisons never excee
ded 0.05). One-sample t-tests compared performance to chance to 
determine if significant learning was detected. Independent sample t- 
tests compared performance in our experimental groups and conditions 
to ImmTest to determine if significant disruption or enhancement of 
learning was detected. 

Pearson correlations examined the relation between sleep physi
ology and behavioral performance. Benjamini–Hochberg correction 
with a false discovery rate set at 5% was used to control for multiple 
correlations (Benjamini & Hochberg, 1995). 

3. Results 

3.1. Experimental nap polysomnography 

Nap PSG data are summarized in Table 1. By design, the REM group 
had greater total sleep time (t(66) = 4.84, p <.001) and minutes of REM 
(t(66) = 8.62, p <.001) than the NREM group. The REM nap group also 
had greater sleep efficiency than the NREM group (t(66) = 2.11, p =.04). 
There was no difference in sleep latency (p =.61), minutes of stage 1 (p 
=.91), stage 2 (p =.20), slow wave sleep (p =.83) or wake after sleep 
onset (p =.95) between groups. The groups also did not differ in the 
count and density of sleep spindles, SO count or density, or delta power 

Table 1 
Nap polysomnography sleep descriptives.   

NREM group REM group 

Total sleep time (min) 58.3 ± 15.9 77.4 ± 16.4 
Stage 1 (min) 5.0 ± 4.3 5.1 ± 3.1 
Stage 2 (min) 38.3 ± 15.3 42.9 ± 14.1 
Slow wave sleep (min) 15.0 ± 11.6 15.6 ± 11.8 
Rapid eye movement (min) 0.0 ± 0.0 13.9 ± 9.9 
Sleep latency (min) 7.4 ± 4.4 6.8 ± 4.7 
Wake after sleep onset (min) 7.6 ± 6.3 7.7 ± 8.1 
Sleep efficiency (%) 80.0 ± 9.4 84.5 ± 8.1 
Spindle count (stage 2) 183.47 ± 87.26 222.32 ± 81.28 
Spindle count (SWS) 65.97 ± 60.82 81.92 ± 67.69 
Spindle density (stage 2) 5.05 ± 1.14 5.30 ± 1.21 
Spindle density (SWS) 4.61 ± 1.71 5.39 ± 1.55 
SO count (stage 2) 104.40 ± 65.92 129.53 ± 49.20 
SO count (SWS) 43.97 ± 37.02 50.21 ± 41.17 
SO density (stage 2) 4.84 ± 2.02 5.14 ± 1.32 
SO density (SWS) 5.70 ± 1.92 5.77 ± 1.62 

Note: Data are mean ± SD. Spindle count and density, SO count and density are 
selected from the channel C3. 
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during stage 2 and slow wave sleep (all ps > 0.10; we did not compare 
theta power since the NREM group had zero minutes of REM sleep). 

3.2. Immediate test performance 

Performance in the immediate test comparison group was signifi
cantly better than chance [t(13) = 4.44, p =.001] (ImmTest performance 
is the blue line plotted in Figs. 2 and 3). Mean accuracy was 63.1% (SD 
= 11.0). Subsequent analyses will compare performance in the experi
mental groups to this performance benchmark to examine whether 
performance is disrupted or enhanced following low or high interference 
and consolidation. 

3.3. Interference effects on statistical learning 

First, we confirmed that the test order of the sets (ACBY or CAYB) did 
not impact performance on any set (i.e., cause interference at retrieval; 
Set A (p =.94), Set B (p =.50), Set C (p =.46), Set Y (p =.29)). 

We examined if offline brain state interacted with interference con
dition (Fig. 2, see also Supplementary Fig. 1). A 3 × 4 mixed ANOVA 
with Set (A/B/C) as the within-subject factor and Group (AW/QW/ 
NREM/REM) as a between-subject factor did not find significant main 
effects of Set [F(2,292) = 2.00, p =.14] or Group [F(3,146) = 1.24, p 
=.30], and no significant Set × Group interaction [F(6,292) = 1.35, p 
=.24]. This suggests that overall, the different task conditions did not 
create detectable amounts of impairment due to interference, and 
interference at encoding did not interact with offline brain states to 
modulate performance 7 h later. However, examining group differences 
within each task condition (high and low interference) separately 
showed a more nuanced picture. 

3.4. Low interference condition 

Both wake and sleep groups showed performance significantly 

greater than chance (all ps < 0.003) in the low interference (Set C) 
condition, although there was no difference in Set C performance be
tween groups [F(3,146) = 0.18, p =.91]. Performance in each group also 
did not differ from the ImmTest benchmark (all ps > 0.30). We also ran a 
contrast analysis to specifically test our a-priori hypothesis that the 
NREM and REM nap groups would show a sleep-related benefit 
compared to AW and QW (using contrast weights AW: -0.5, QW: -0.5, 
NREM: +0.5, REM: +0.5). However, the contrast analysis revealed that 
the data did not follow the predicted pattern of results [t(146) = 0.38, p 
=.71). In further support of the finding that final performance did not 
depend on sleep, there were no significant correlations between total 
sleep time or minutes in any sleep stage and Set C performance in the 
nap groups (all ps > 0.07). There was a significant correlation between 
delta power and Set C performance in the NREM group (during both 
stage 2 and slow wave sleep) that we report in Supplementary Table 1 
for descriptive purposes, but given the lack of an overall sleep effect, we 
hesitate to interpret these correlations as extremely meaningful. 

Together, these results demonstrate that when exposure to one task 
Set was isolated in time (i.e., low task-specific interference), the 
magnitude of learning measured in Session 2 did not depend on a period 
of sleep between familiarization and test. Additionally, performance was 
neither enhanced nor disrupted compared to ImmTest, suggesting that 
1) low interference did not disrupt learning, and 2) all four offline 
conditions maintained (but did not enhance) the magnitude of learning 
apparent shortly after familiarization. 

3.5. High interference condition 

Next, we examined memory in the high interference task conditions 
(Sets A and B). Overall, there was no interaction between Set (A/B) and 
Group [F(3,146) = 1.21, p =.31]. Comparing performance on each Set to 
chance, we found that only the AW and REM groups showed memory 
above chance (all ps < 0.005); subjects in the QW and NREM groups did 
not recognize base pairs over non-base pairs better than chance level (all 
ps > 0.05). Compared to ImmTest, the NREM group showed retroactive 

Fig. 2. Set A, B and C performance. Sets A and B are the high interference 
condition; Set C is the low interference condition. The darker blue line indicates 
ImmTest mean performance and light blue bands are ± 1 SEM. Asterisks above 
chance line indicate recognition performance significantly greater than chance 
(all ps < 0.001). Memory impairment (i.e., not greater than chance perfor
mance) was apparent for high interference Sets A and B in the QW and NREM 
groups. All groups showed performance greater than chance for low interfer
ence Set C. Asterisks below the blue ImmTest line indicate recognition perfor
mance significantly worse than the ImmTest comparison group for Set B in QW 
and Set A in NREM. All asterisks indicate p <.05. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 3. Set Y performance across conditions. Set Y showed greater than chance 
performance in all groups, and no difference between groups. Learning may 
have been facilitated in the REM group, however, this did not reach statistical 
significance compared to ImmTest (dark blue line is ImmTest mean and light 
blue bands are ± 1 SEM). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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interference of Set A (p =.03, all other groups ps > 0.17), whereas the 
QW group showed proactive interference of Set B (p =.02, all other 
groups ps > 0.32). No Group/Set combination showed significant 
enhancement compared to ImmTest. Total sleep time and minutes in 
each sleep stage were not correlated with Set A or B performance in the 
nap groups (all ps > 0.12; see Supplementary Table 1 for correlations 
with sleep events and power spectra). Together, these data suggest that 
learning may have been impaired due to the combination of high 
interference during encoding and QW/NREM brain states during offline 
consolidation. AW and REM consolidation brain states appeared to be 
resilient to the detrimental effects of interference. 

3.6. Novel set (Fig. 3) 

All four groups performed greater than chance level on the novel Set 
Y (all ps < 0.009), and a one-way ANOVA found no differences between 
groups [F(3,146) = 1.39, p =.25]. Further, there were no significant 
correlations between total sleep time or minutes in any sleep stage and 
Set Y performance (all ps > 0.16) in the nap groups. We next asked if 
learning of novel Set Y would be facilitated due to prior experience with 
similar learning rules in Sets A-C. We compared Set Y performance to 
ImmTest since these two conditions had an equivalent retention interval 
(i.e., 10 min). Set Y performance was not statistically different from 
ImmTest in any group (all ps > 0.12), suggesting that prior experience 
with the task did not provide a learning boost. 

Despite the lack of statistical significance, visual inspection of the 
data shows that performance on Set Y in the REM group (M = 70.3%, SE 
= 3.5) was numerically better than any other group [AW (M = 64.8%, 
SE = 3.4), QW (M = 61.3%, SE = 3.3) and NREM (M = 61.1%, SE = 4.0)] 
or task condition. We conducted exploratory within-subject compari
sons between performance on Set Y and Set C to see if new Set Y learning 
was facilitated compared to low interference Set C learning. The dif
ference in performance between Set C and Y was only significant in the 
REM group [t(37) = 3.06, p =.004; all other ps > 0.26), which may 
suggest that Set Y performance was boosted in the REM group. Within 
the REM group, Set Y performance was correlated with both the number 
of spindles and slow oscillation events during stage 2 sleep (Supple
mentary Table 1). Although we cannot claim that REM sleep facilitates 
abstraction in this task, we also cannot completely rule out an effect of 
REM. 

3.7. Task awareness 

At the conclusion of the study, we asked a subset of our participants 
(n = 60) if they noticed any patterns in the task, and 3 participants (5%) 
reported noticing the spatial positions of the base pairs relative to one 
another. 

4. Discussion 

The goals of the current study were three-fold. Using a spatial sta
tistical learning task in which participants passively learned spatial re
lations between unique shapes, we asked if 1) sleep benefits 
consolidation of spatial statistical learning; 2) statistical learning is 
impaired by task-specific interference, and if so, does REM sleep 
“rescue” learning; and 3) sleep, specifically REM sleep, supports 
abstraction of learning rules, thereby facilitating statistical learning of a 
novel stimulus set. Contrary to our predictions, we found no evidence of 
sleep-dependent consolidation of statistical learning in the low inter
ference condition. When we introduced additional task-specific inter
ference, both AW and REM sleep groups showed robust amounts of 
learning, whereas learning was disrupted in both the QW and NREM 
groups. This suggests that, similar to perceptual learning, task-specific 
interference does render some impairment for spatial statistical 
learning, and that REM sleep can help overcome this interference, but 
this benefit is not exclusive to REM sleep. Finally, we found weak 

evidence of a REM sleep benefit for abstraction, but further studies are 
needed to confirm this finding. 

Only a handful of prior studies have examined statistical learning 
over the “long-term” (i.e., >30 min) (Kim et al., 2009; Kobor et al., 
2017). Kim et al. (Kim et al., 2009), exposed subjects to a stream of 
abstract objects for 5 min and tested implicit learning of the temporal 
relationships either immediately after exposure or 24hr later. They 
found that implicit learning was maintained across the 24hr delay, with 
neither deterioration nor enhancement of performance. However, this 
study design did not consider the possible evolution of memory across a 
day of wake, or the possibility that sleep was a critical factor contrib
uting to the maintenance of the learning. For example, it has been 
demonstrated in the motor domain that waking provides an early boost 
to performance 30 min after learning, followed by performance decay 
over the next 4 hr, and subsequent sleep restores performance to the 
early-boost level (Nettersheim et al., 2015). As such, sleep eliminated 
the detrimental effects of waking, but did not actually provide any 
performance enhancement. Another study sought to further define the 
time-course of statistical learning by testing people 30 min, 1 hr, 2 hr, 4 
hr, or 24 hr post-familiarization (Arciuli & Simpson, 2012). They found 
that memory was evident at each test delay, with no differences in the 
magnitude of performance based on test delay. These data suggest that 
statistical learning remains stable up to 4 hr after familiarization and is 
not enhanced by sleep. Our findings contribute to this growing body of 
work by demonstrating that statistical learning under conditions of low 
interference (Set C) did not deteriorate across 7 hr of wake, and, 
therefore, sleep was not required to maintain performance. 

Further, similar to findings from a recent study (Simor et al., 2019), 
we did not find a sleep benefit for consolidating this memory. Our results 
are also in concordance with previous work that reported an equivalent 
benefit of sleep, quiet wake and active wake on a contextual cueing 
visual search task (Mednick et al., 2009). Similar to the spatial statistical 
learning in this study, contextual cueing involves implicit memory for 
repeated patterns in visual displays. 

However, our results differ from previous studies that found 
improved recognition of statistical relationships after sleep (Durrant 
et al., 2011, 2013). In these experiments, participants were exposed to a 
sequence of auditory tones arranged according to a probabilistic struc
ture. Then, they were tested on recognition of novel sequences that 
either followed the same structure or a random structure. Performance 
on the recognition task was enhanced after both daytime naps and 
nighttime sleep compared to equivalent amounts of time awake (Dur
rant et al., 2011). Sleep also facilitated cross-modal transfer of statistical 
learning from the auditory to visual domain (Durrant et al., 2016). In 
both studies, the magnitude of behavioral enhancement/transfer was 
associated with minutes of slow wave sleep (SWS) obtained. Further
more, in both the unimodal and cross-modal paradigms, SWS was also 
shown to predict changes in brain activation (weaker parahippocampal 
and stronger striatal responses) following sleep (Durrant et al., 2013, 
2016). These data suggest that sleep consolidation of statistical learning 
may involve a gradual shift of the representation to the striatal network 
and less dependence on the hippocampus (Durrant et al., 2013), in line 
with models of systems-level consolidation that predict a decrease in 
hippocampal involvement as connections in the long-term store are 
strengthened (Frankland & Bontempi, 2005). Another study found that 
sleep improved predictive sequence coding of implicitly learned visual- 
temporal sequences, suggesting that sleep worked to consolidate an in
ternal model of the trained sequence which led to better prediction 
ability (and stronger prediction errors) at test (Lutz et al., 2018). 

Given the conflicting findings on the role of sleep for statistical 
learning, one possibility is that spatial statistical learning without a 
temporal component may not rely on sleep-dependent consolidation to 
the same extent as sequence-based learning. The temporal scaffolding 
hypothesis (Lerner & Gluck, 2019) proposes a bias toward sleep- 
dependent explicit detection of temporal, compared to stationary, reg
ularities. This is because exposure to temporal regularities during real- 
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time waking experience often occurs over much longer timescales than 
typical Hebbian mechanisms (several seconds vs. 50–200 ms). If these 
sequential, episodic experiences, which likely depend on the hippo
campus (Schapiro et al., 2012), are subsequently replayed at a com
pressed timescale during sleep as suggested by research in rodents (Ji & 
Wilson, 2007), they now fall within the Hebbian timescale. Thus, 
revisiting the regularities during sleep will help build up the cortical 
representation, thereby yielding a sleep-dependent benefit. 

Another interesting comparison to consider is the difference between 
novel object learning and spatial learning in rodents. The novel object 
learning task tests an animal’s ability to discriminate between a familiar 
and novel object; although the objects extend in space, the learning does 
not depend on space (or temporal, sequential information) itself. This is 
in contrast to spatial navigation learning, which involves an animal 
making sequential movements through space, and inherently involves a 
critical temporal component. Spatial navigation learning is known to 
strongly engage the hippocampus and depends on sleep consolidation 
(Ego-Stengel & Wilson, 2010; Nguyen et al., 2013; Orban et al., 2006). 
On the other hand, novel object learning may be more supported by the 
cortical structures of the medial temporal lobe and shows less depen
dence on sleep consolidation (Buffalo et al., 2006; Cohen & Stackman, 
2015; Ishikawa et al., 2014; Oliveira et al., 2010). Our spatial SL task can 
be viewed as a simple instantiation of novel object learning, where the 
base pairs are objects in a cluttered, unknown environment (Fiser, 
2009), and is in line with research suggesting object recognition does not 
depend on sleep consolidation to the same extent as more complex types 
of learning involving temporal sequences or other associative informa
tion (Ishikawa et al., 2014; McDevitt et al., 2014) 

However, there are many studies that do show sleep effects on vi
suospatial learning in humans, including many that used targeted 
memory reactivation during SWS to presumably bias replay of object- 
location learning (Rasch et al., 2007; Rudoy et al., 2009). In many of 
these studies, the tasks involve explicit memory (i.e., declarative 
memory) for object-location associations. In contrast, although the test 
phase is explicit recognition, the initial learning in our study was im
plicit – participants were only instructed to watch the scenes and never 
given an explicit learning goal or strategy. Furthermore, in the previous 
declarative memory studies, the behavioral benefit of sleep was seen as a 
reduction in forgetting, not performance enhancement. In contrast, the 
spatial statistical learning in our study was not subject to forgetting (in 
the low interference condition), which hints at learning mechanisms 
fundamentally different from the declarative memory system. This study 
adds to the growing body of work suggesting that both statistical 
learning, and the effect of sleep on consolidation more generally, 
strongly depends on the characteristics of the task used to induce 
learning and probe memory (e.g., spatial vs. temporal, implicit vs. 
explicit, stronger hippocampal vs. weaker hippocampal engagement) 
(Arnon, 2020; Bays et al., 2016; Lerner & Gluck, 2019). 

We found that high interference at encoding could only be overcome 
by active wake (AW) and REM sleep during the offline period, whereas 
performance was disrupted in the QW and NREM groups. A similar 
pattern of results (i.e., parallel performance profiles between AW and 
REM nap groups, and between QW and NREM nap groups) was reported 
in a prior study examining novel object learning (McDevitt et al., 2014). 
The AW and REM naps facilitated segmentation of novel objects 
embedded in backgrounds of camouflage, whereas QW and NREM naps 
did not. We hypothesized that similar learning profiles in AW and REM 
may be explained in part by the shared functional and neuromodulatory 
features that promote synaptic plasticity in these two brain states 
(Buzsáki, 1989; Hasselmo, 1999; Hasselmo & Bower, 1993; Matsukawa 
et al., 1997), and are distinct from QW and NREM brain states, which do 
not favor synaptic plasticity (Jones Leonard et al., 1987; Mednick et al., 
2011). 

In the current study, performance deficits were specific to the com
bination of high task interference and QW/NREM offline states. If we 
assume that Set A and B representations were weaker than Set C at the 

time of QW/sleep onset (due to interference during learning), then one 
possibility is that consolidation during QW and NREM states prioritized 
stronger Set C information and punished weaker Set A/B information 
(Wei et al., 2016), although there is also evidence showing weaker in
formation is prioritized during QW (Schapiro et al., 2018). Alternatively, 
there may have been relatively more downscaling of Set A/B synaptic 
connections compared to Set C (Tononi & Cirelli, 2014). In addition, 
although both groups showed interference, the interference profiles 
were different from each other, with the NREM group specifically 
demonstrated impairment of Set A (i.e., retroactive interference), 
whereas the QW group showed impairment of Set B (i.e., proactive 
interference). On a related note, computational models that simulate 
encoding multiple memories predict that NREM slow oscillations pro
mote competition between distinct memory traces thereby biasing 
consolidation to the stronger trace (Wei et al., 2018). Crucially, the QW 
and NREM experimental conditions were not followed by a period of 
REM sleep, which may be an important brain state for recovering weak 
memories and resolving interference (Baran et al., 2010; McDevitt et al., 
2015; Norman et al., 2005). Indeed, behavioral performance was intact 
in the REM sleep condition in which participants cycled through both 
NREM and REM sleep. In this framework, although AW and REM sleep 
conditions yielded similar behavioral outcomes, the underlying repre
sentations likely underwent different neural modifications. This high
lights the importance of future research to understand the content and 
dynamics of memory reprocessing during wake and sleep, and to mea
sure the transformation of the underlying neural representations. 

Finally, we found weak evidence of a possible REM sleep benefit for 
abstraction. If REM sleep does benefit abstraction on this task, one 
possibility is that REM sleep (or the combination of NREM + REM sleep) 
helped to consolidate the general rules of the task so that they could be 
applied more flexibly in a new learning environment (Batterink et al., 
2014; Nieuwenhuis et al., 2013). Another possibility is that synaptic 
downscaling during sleep helped reduce or eliminate weak or noisy 
connections, freeing networks for encoding of new, similar materials. 
According to the synaptic homeostasis hypothesis (Tononi & Cirelli, 
2014), downscaling during sleep is indexed by slow wave activity, 
although there is emerging evidence that REM sleep is also important for 
synaptic rescaling (Grosmark, Mizuseki, Pastalkova, Diba, & Buzsáki, 
2012; Klinzing et al., 2019; Niethard et al., 2021). Interestingly, we 
found that stage 2 spindles and slow oscillation events were correlated 
with Set Y performance, but only in the REM group. This suggests that 
memory processing during NREM sleep was modulated by a subsequent 
period of REM (Batterink et al., 2017) and that downscaling mechanisms 
may have played a role in Set Y performance in the REM group. How
ever, our data does not necessarily support one hypothesis over the 
other, and further studies that examine the effect of sleep on rule 
abstraction should attempt to dissociate these factors. 

A limitation of this study is that session 2 always started with the 
learning of the novel set, which could proactively interfere with subse
quent retrieval testing. This proactive influence is difficult to predict as 
it may depend on multiple aspects of the design. For example, adding the 
novel set could impair learning, but this depends on a number of aspects 
of the context, including not only the sleep/wake condition but also 
similarities between the two shape sets and the overall complexity of the 
stimuli. Similarly, it could benefit the spatial configuration learning, but 
only to the extent to which there is a similarity in the configurations 
across the two sets, and even that link is modulated by sleep/wake 
conditions and the extent of the familiarization. Future studies are 
needed to tease apart the interaction between different statistical 
learning events. In the current study, we focused on investigating the 
sleep/wake effect by minimizing other variables: the spatial configura
tion structure was the same across the sessions; the familiarization and 
test conditions were kept identical, and the allocation of the shapes to 
different sessions was randomized to keep similarity effects counter
balanced. Another limitation is that the retention interval for set C set 
was about one hour shorter than for sets A and B, and it was familiarized 
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closest to the sleep intervention, both of which could contribute to the 
overall better performance for set C, regardless of low interference 
conditions. 

In summary, we have found no evidence for sleep benefitting spatial 
statistical learning under low task-specific interference conditions. 
Exploratory analyses discovered some preliminary evidence that inter
ference can impair statistical learning, although the damage was only 
evident following an offline period of QW or NREM sleep, whereas AW 
and REM sleep consolidation brain states were resilient to these effects. 
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